肾前性氮质血症主要由肾脏灌注不足引起,这种变化是相应的肾脏生理学反应。在低灌注压发生时,肾脏的主要反应是增强钠和水的重吸收。颈动脉和主动脉弓的压力感受器通过刺激交感神经对低血压做出反应。这种方式与肾小球入球小动脉的舒张和出球小动脉的收缩一起试图使肾小球滤过率维持在一个相对窄的范围内。灌注下降促使肾素-血管紧张素-醛固酮系统激活。血管紧张素 II(一种强有力的血管收缩因子)刺激醛固酮释放,促进钠和水在集合管重吸收。低血容量还能够刺激下丘脑,促进抗利尿激素 (antidiuretic hormone, ADH) 释放,增加肾小管再吸收水的能力,使尿液浓缩。
急性肾小管坏死 (ATN) 主要由缺血引起,是 AKI 最常见的形式,是肾灌注降低和组织低氧血症的进一步进展,产生直接的微血管内皮损伤和肾小管缺血,通常近曲小管起初部位和外髓段最严重。[18]Myers BD, Moran SM. Hemodynamically mediated acute renal failure. N Engl J Med. 1986;317:97-105.http://www.ncbi.nlm.nih.gov/pubmed/3510383?tool=bestpractice.com[19]Brezis M, Rosen S, Silva P, et al. Renal ischemia: a new perspective. Kidney Int. 1984;26:375-383.http://www.ncbi.nlm.nih.gov/pubmed/6396435?tool=bestpractice.com 低氧血症导致活性氧增加、可用腺苷三磷酸 (adenosine triphosphate, ATP) 减少以及细胞功能障碍和坏死。[20]Kaushal GP, Basnakian AG, Shah SV. Apoptotic pathways in ischemic acute renal failure. Kidney Int. 2004;66:500-506.http://www.ncbi.nlm.nih.gov/pubmed/15253697?tool=bestpractice.com 此外,研究显示补体系统激活、中性粒细胞直接活化、膜攻击复合物激活、细胞因子、趋化因子和血管活性物质共同参与了其病理进展。[21]Zhou W, Farrar CA, Abe K, et al. Predominant role for C5b-9 in renal ischemia/reperfusion injury. J Clin Invest. 2000;105:1363-1371.http://www.jci.org/articles/view/8621http://www.ncbi.nlm.nih.gov/pubmed/10811844?tool=bestpractice.com[22]Thurman J, Lucia MS, Ljubanovic D, et al. Acute tubular necrosis is characterized by activation of the alternative pathway of complement. Kidney Int. 2005;67:524-530.http://www.ncbi.nlm.nih.gov/pubmed/15673300?tool=bestpractice.com[23]Bonventre JV, Zuk A. Ischemic acute renal failure: an inflammatory disease? Kidney Int. 2004;66:480-485.http://www.ncbi.nlm.nih.gov/pubmed/15253693?tool=bestpractice.com[24]Lien YH, Yong KC, Cho C, et al. S1P(1) selective agonist, SEW2871, ameliorates ischemic-reperfusion injury in acute renal failure. Kidney Int. 2006;69:1601-1608.http://www.ncbi.nlm.nih.gov/pubmed/16572108?tool=bestpractice.com[25]Boffa JJ, Arendshorst WJ, et al. Maintenance of renal vascular reactivity contributes to acute renal failure during endotoxemic shock. J Am Soc Nephrol. 2005;16:117-124.http://www.ncbi.nlm.nih.gov/pubmed/15563566?tool=bestpractice.com[26]Boffa JJ, Just A, Coffman TM, et al. Thromboxane receptor mediates renal vasoconstriction and contributes to acute renal failure in endotoxemic mice. J Am Soc Nephrol. 2004;15:2358-2365.http://www.ncbi.nlm.nih.gov/pubmed/15339984?tool=bestpractice.com[27]Khan RZ, Badr KF. Endotoxin and renal function: perspectives to the understanding of septic acute renal failure and toxic shock. Nephrol Dial Transplant. 1999;14:814-818.http://www.ncbi.nlm.nih.gov/pubmed/10328448?tool=bestpractice.com[28]Schrier RW, Wang W. Acute renal failure and sepsis. N Engl J Med. 2004;351:159-169.http://www.ncbi.nlm.nih.gov/pubmed/15247356?tool=bestpractice.com[29]Badr KF, Kelley VE, Rennke HG, et al. Roles for thromboxane A2 and leukotrienes in endotoxin-induced acute renal failure. Kidney Int. 1986;30:474-480.http://www.ncbi.nlm.nih.gov/pubmed/3537451?tool=bestpractice.com 急性肾小管坏死也可能由暴露于药物、内毒素或放射性对比剂导致。动物模型表明,对比剂直接的细胞毒性以及肾血管收缩导致髓质血流量减少、血液黏度增加和低氧血症。[30]Weisberg LS, Kurnik PB, Kurnik BR, et al. Radiocontrast induced nephropathy in humans. Role of renal vasoconstriction. Kidney Int. 1992;41:1408-1415.http://www.ncbi.nlm.nih.gov/pubmed/1614056?tool=bestpractice.com[31]Russo D, Minutolo R, Cianciaruso B, et al. Early effects of contrast media on renal hemodynamics and tubular function in chronic renal failure. J Am Soc Nephrol. 1995;6:1451-1458.http://www.ncbi.nlm.nih.gov/pubmed/8589322?tool=bestpractice.com[32]Persson P, Hansell P, Liss P. Pathophysiology of contrast medium-induced nephropathy. Kidney Int. 2005;68:14-22.http://www.ncbi.nlm.nih.gov/pubmed/15954892?tool=bestpractice.com[33]Cantley LG, Spokes K, Clark B, et al. Role of endothelin and prostaglandins in radiocontrast-induced renal artery constriction. Kidney Int. 1993;44:1217-1223.http://www.ncbi.nlm.nih.gov/pubmed/8301922?tool=bestpractice.com[34]Heyman S, Rosenberger C, Rosen S, et al. Regional alterations in renal haemodynamics and oxygenation: a role in contrast medium-induced nephropathy. Nephrol Dial Transplant. 2005;20(suppl 1):i6-i11.http://www.ncbi.nlm.nih.gov/pubmed/15705946?tool=bestpractice.com[35]Pflueger A, Larson TS, Nath KA, et al. Role of adenosine in contrast media-induced acute renal failure in diabetes mellitus. Mayo Clin Proc. 2000;75:1275-1283.http://www.ncbi.nlm.nih.gov/pubmed/11126837?tool=bestpractice.com
梗阻性肾脏损伤主要是由于肾小管内压力增加引起肾小管缺血和萎缩而导致的。证据还显示,单核细胞和巨噬细胞的汇集可造成肾脏损伤。当梗阻变成慢性时,细胞因子、自由基、蛋白酶和肿瘤坏死因子-β 的释放引起肾小管损伤和纤维化。[36]Schreiner GF, Kohan DE. Regulation of renal transport processes and hemodynamics by macrophages and lymphocytes. Am J Kidney Dis. 1990;258:F761-F767.http://www.ncbi.nlm.nih.gov/pubmed/2184672?tool=bestpractice.com[37]Klahr S. New insights into the consequences and mechanisms of renal impairment in obstructive nephropathy. Am J Kidney Dis. 1991;18:689-699.http://www.ncbi.nlm.nih.gov/pubmed/1962655?tool=bestpractice.com[38]Ophascharoensuk V, Giachelli CM, Gordon K, et al. Obstructive uropathy in the mouse: Role of osteopontin in interstitial fibrosis and apoptosis. Kidney Int. 1999;56:571-580.http://www.ncbi.nlm.nih.gov/pubmed/10432396?tool=bestpractice.com[39]Moon JA, Kim HT, Cho IS, et al. IN-1130, a novel transforming growth factor-beta type I receptor kinase (ALK5) inhibitor, suppresses renal fibrosis in obstructive nephropathy. Kidney Int. 2006;70:1234-1243.http://www.ncbi.nlm.nih.gov/pubmed/16929250?tool=bestpractice.com
有很初步的证据表明,AKI 可能存在遗传倾向,尤其与载脂蛋白E (apolipoprotein E, Apo-E) 基因相关。[40]Lu JC, Coca SG, Patel UD, et al. Searching for genes that matter in acute kidney injury: a systematic review. Clin J Am Soc Nephrol. 2009;4:1020-1031.http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2689876/?tool=pubmedhttp://www.ncbi.nlm.nih.gov/pubmed/19443624?tool=bestpractice.com 全基因组研究已发现其他保护性候选基因,但需要开展更多工作来验证这些研究结果。[41]Zhao B. Genome-wide association study to identify single nucleotide polymorphisms conferring risk for acute kidney injury. J Am Soc Nephrol. 2014;25(suppl):7A.